A Novel Density Peak Fuzzy Clustering Algorithm for Moving Vehicles Using Traffic Radar

Author:

Cao Lin,Liu Yunxiao,Wang Dongfeng,Wang Tao,Fu Chong

Abstract

The detection of adjacent vehicles in highway scenes has the problem of inaccurate clustering results. In order to solve this problem, this paper proposes a new clustering algorithm, namely Spindle-based Density Peak Fuzzy Clustering (SDPFC) algorithm. Its main feature is to use the density peak clustering algorithm to perform initial clustering to obtain the number of clusters and the cluster center of each cluster. The final clustering result is obtained by a fuzzy clustering algorithm based on the spindle update. The experimental data are the radar echo signal collected in the real highway scenes. Compared with the DBSCAN, FCM, and K-Means algorithms, the algorithm has higher clustering accuracy in certain scenes. The average clustering accuracy of SDPFC can reach more than 95%. It is also proved that the proposed algorithm has strong robustness in certain highway scenes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Discrimination of Automotive Radar Distributed Targets;2023 IEEE International Radar Conference (RADAR);2023-11-06

2. A Novel Possibilistic Clustering Algorithm for Measurement Data of Vehicle MMW Radar;IEEE Sensors Journal;2023-08-01

3. Radar Signal Sorting Based on Adaptive SOFM and Coyote optimization;2022 7th International Conference on Signal and Image Processing (ICSIP);2022-07-20

4. Clustering with Missing Features: A Density-Based Approach;Symmetry;2022-01-02

5. An Improved K-Means Algorithm Based on Evidence Distance;Entropy;2021-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3