Adaptive Quantization Range Division Technique for Electronic Control Data Compression in CNC Machine Tools

Author:

Hu Weiqi1,Zhou Huicheng1,Yang Jianzhong1,Hui Enming1,Dai Chaoren1ORCID

Affiliation:

1. National Center of Technology Innovation for Intelligent Design and Numerical Control, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

With the development of new technologies such as artificial intelligence and big data, Industry 4.0 in manufacturing has been launched. As the core pillar of industrial manufacturing, computer numerical control (CNC) machine tools face significant challenges in data acquisition transmission and storage due to their complex structure, high volume of data points, strong time-series characteristics, and large amounts of data. To address the shortcomings of existing compression algorithms in quantization methods for large amounts of data in the instruction-domain, this paper proposes a quantization method based on distortion rate evaluation and linear fitting entropy reduction transformation, which aims to compress state signals such as the load power and load current while ensuring the availability of the data. This approach provides technical support for the transmission of high-frequency big data and meets the lightweight data acquisition requirements of digital twins for CNC machine tools. Compared to the empirical approach, this approach was more accurate and more computationally efficient.

Funder

National Center of Technology Innovation for Intelligent Design and Numerical Control (NCDC), Huazhong University of Science and Technology

Hubei Province Science and Technology Major Project

National High-quality Development Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3