HEBCS: A High-Efficiency Binary Code Search Method

Author:

Sun Xiangjie12,Wei Qiang2,Du Jiang2,Wang Yisen2

Affiliation:

1. School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou 450002, China

2. School of Cyber Science and Engineering, PLA Information Engineering University, Zhengzhou 450001, China

Abstract

Binary code search is a technique that involves finding code with similarity to a given code within a code database. It finds extensive application in scenarios such as vulnerability queries and code defect analysis. While many existing methods employ advanced machine learning models for similarity analysis, their lack of interpretability and low efficiency in dealing with large-scale functions still remain challenges. To address these issues, we propose a high-efficiency binary code search method called HEBCS. It employs an interpretable approach to extract function-level features and transforms each feature into a locality-sensitive hash representation. Then, the hashes of these features are combined to form the hash of the function. By leveraging the pigeonhole principle, HEBCS enables efficient storage and retrieval of functions, ensuring high execution efficiency even in the presence of large-scale data. Furthermore, we compare HEBCS with a classic method and a state-of-the-art method, demonstrating that HEBCS achieves significantly higher search efficiency while maintaining a comparable accuracy, recall and F1-score. In real-world vulnerability query applications, HEBCS demonstrated promising results. Its effectiveness in large-scale binary function searches suggests significant potential for practical applications.

Funder

National Key R&D Program of China

Program for Innovation Leading Scientists and Technicians of ZhongYuan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3