Few-Shot Hyperspectral Image Classification Based on Convolutional Residuals and SAM Siamese Networks

Author:

Xia Mengen1,Yuan Guowu1ORCID,Yang Lingyu1,Xia Kunming1,Ren Ying2,Shi Zhiliang2,Zhou Hao1ORCID

Affiliation:

1. School of Information, Yunnan University, Kunming 650504, China

2. Kunming Enersun Technology Co., Ltd., Kunming 650504, China

Abstract

With the development of few-shot learning, significant progress has been achieved in hyperspectral image classification using related networks, leading to improved classification outcomes. However, practical few-shot hyperspectral image classification encounters challenges such as network overfitting and insufficient feature extraction during the model training process. To address these issues, we propose a model called CRSSNet (Convolutional Residuals and SAM Siamese Networks) for few-shot hyperspectral image classification. In this model, we deepen the network depth and employ the convolutional residual technique to enhance the feature extraction capabilities and alleviate the problem of network gradient degradation. Additionally, we introduce the Spatial Attention Mechanism (SAM) to effectively leverage spatial information features in hyperspectral images. Lastly, metric learning is employed by comparing the distance between two output feature vectors to determine the label category. Experimental results demonstrate that our method achieves superior classification performance compared to other methods.

Funder

Major Science and Technology Project in Yunnan Province

Yunnan Province Science and Technology Department

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3