Enhancing the Performance of a Renewable Energy System Using a Novel Predictive Control Method

Author:

Mossa Mahmoud A.1ORCID,El Ouanjli Najib2ORCID,Gam Olfa3,Do Ton Duc4ORCID

Affiliation:

1. Electrical Engineering Department, Faculty of Engineering, Minia University, Minia 61111, Egypt

2. Faculty of Sciences and Technology, Hassan 1st University, Settat 26000, Morocco

3. Département École de Genie, Université Québéc en Abitibi Témiscamingue, Rouyn-Noranda, QC J9X 5E4, Canada

4. Department of Robotics and Mechatronics, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan

Abstract

The current study concerns improving the performance of a renewable energy system using systematically designed control algorithms. The performance of the system under study is evaluated under two operating scenarios: the first in which the system consists of only a wind-driven synchronous generator connected to the utility grid; in the second scenario, the generator is combined with a photo-voltaic solar system and a battery for supplying a load. Each system component is modeled and thoroughly described. To maximize the benefits of solar and wind energies, two separate maximum power point tracking procedures are adopted. Furthermore, to enhance the generator’s dynamics, a novel predictive control scheme is designed and validated by comparing its performance with traditional predictive control. The novel predictive controller utilized a simple and unique cost function to avoid the shortages of traditional predictive controllers. For standalone operation, an effective procedure is adopted to ensure the power balance between the generation, storage, and isolated load units. To evaluate the effectiveness of the designed controllers under different operating regimes, Matlab/Simulink is utilized for this task. The obtained results confirm the superiority of the novel predictive scheme used with the synchronous generator over the classic control approach for the two operating scenarios. This has been shown in the form of reduced ripples and reduced current harmonics. The obtained results are also confirming the validity of the adopted maximum power tracking strategies with solar panels and wind turbines as well. Furthermore, balanced power delivery is achieved thanks to the adopted management strategy for standalone operation, which enhances the overall system performance.

Funder

Nazarbayev University under the Faculty Development Competitive Research Grant Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3