DoseFormer: Dynamic Graph Transformer for Postoperative Pain Prediction

Author:

Zhang Cao1ORCID,Zhao Xiaohui2ORCID,Zhou Ziyi3,Liang Xingyuan3,Wang Shuai3

Affiliation:

1. The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China

2. School of Cyber Science and Engineering, Southeast University, Nanjing 211189, China

3. School of Computer Science and Engineering, Southeast University, Nanjing 211189, China

Abstract

Many patients suffer from postoperative pain after surgery, which causes discomfort and influences recovery after the operation. During surgery, the anesthetists usually rely on their own experience when anesthetizing, which is not stable for avoiding postoperative pain. Hence, it is essential to predict postoperative pain and give proper doses accordingly. Recently, the relevance of various clinical parameters and nociception has been investigated in many works, and several indices have been proposed for measuring the level of nociception. However, expensive advanced equipment is required when applying advanced medical technologies, which is not accessible to most institutions. In our work, we propose a deep learning model based on a dynamic graph transformer framework named DoseFormer to predict postoperative pain in a short period after an operation utilizing dynamic patient data recorded in existing widely utilized equipment (e.g., anesthesia monitor). DoseFormer consists of two modules: (i) We design a temporal model utilizing a long short-term memory (LSTM) model with an attention mechanism to capture dynamic intraoperative data of the patient and output a hybrid semantic embedding representing the patient information. (ii) We design a graph transformer network (GTN) to infer the postoperative pain level utilizing the relations across the patient embeddings. We evaluate the DoseFormer system with the medical records of over 999 patients undergoing cardiothoracic surgery in the Fourth Affiliated Hospital of Zhejiang University School of Medicine. The experimental results show that our model achieves 92.16% accuracy for postoperative pain prediction and has a better comprehensive performance compared with baselines.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

China National Key R&D Program

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3