Power Function Algorithms Implemented in Microcontrollers and FPGAs

Author:

Moroz Leonid1,Samotyy Volodymyr2ORCID,Gepner Paweł1ORCID,Węgrzyn Mariusz2,Nowakowski Grzegorz2ORCID

Affiliation:

1. Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, 00-661 Warszawa, Poland

2. Faculty of Electrical and Computer Engineering, Cracow University of Technology, Warszawska 24 Str., 31-155 Cracow, Poland

Abstract

The exponential function ax is widespread in many fields of science. Its calculation is a complicated issue for Central Processing Units (CPUs) and Graphics Processing Units (GPUs), as well as for specialised Digital Signal Processing (DSP) processors, such as Intelligent Processor Units (IPUs), for the needs of neural networks. This article presents some simple and accurate exponential function calculation algorithms in half, single, and double precision that can be prototyped in Field-Programmable Gate Arrays (FPGAs). It should be noted that, for the approximation, the use of effective polynomials of the first degree was proposed in most cases. The characteristic feature of such algorithms is that they only contain fast ‘bithack’ operations (‘bit manipulation technique’) and Floating-Point (FP) addition, multiplication, and (if necessary) Fused Multiply-Add (FMA) operations. We published an article on algorithms for this class of function recently, but the focus was on the use of approximations of second-degree polynomials and higher, requiring two multiplications and two additions or more, which poses some complications in FPGA implementation. This article considers algorithms based on piecewise linear approximation, with one multiplication and one addition. Such algorithms of low complexity provide decent accuracy and speed, sufficient for practical applications such as accelerators for neural networks, power electronics, machine learning, computer vision, and intelligent robotic systems. These are FP-oriented algorithms; therefore, we briefly describe the characteristic parameters of such numbers.

Funder

Faculty of Electrical and Computer Engineering, Cracow University of Technology and the Ministry of Science and Higher Education, Republic of Poland

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3