A Unified Active Frequency Regulating and Maximum Power Point Tracking Strategy for Photovoltaic Sources

Author:

Cai Hongda1ORCID,Xia Yanghong2ORCID,Yang Pengcheng1,Li Jing1,Zhou Yongzhi2,Wei Wei2

Affiliation:

1. School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China

2. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

In order to optimize the extraction of solar energy, photovoltaic sources are commonly operated under the control of the so-called maximum power point (MPPT) strategy. However, as the rate of PV installations increases explosively, traditional MPPT algorithms may cause problems such as frequency deviation and power fluctuations, making system frequency stability a challenge due to the inherent intermittent and stochastic nature of PVs. Consequently, in order to reduce the investment and maintenance costs of storage systems, innovative control is expected for PV sources to provide ancillary services for the system, especially for weak systems such as microgrids. In this paper, a novel active power control (APC) strategy, based on characteristic curve fitting, is proposed to flexibly regulate the PV output power. The transient process performance and robustness of the system are improved with the proposed APC strategy. In conjunction, an f–P droop mechanism is designed to provide a frequency regulating (FR) service for the AC microgrid. The comprehensive control strategy unifies the FR function with the traditional MPPT function in a single control structure, allowing the PV source to operate either in the MPPT mode when the system frequency is nominal or in FR mode when the frequency exceeds it. The transition between MPPT and FR is autonomous and fully decentralized, which improves the PV generation efficiency as well as ensuring generation fairness among different parallel PV sources. Importantly, the proposed control strategy does not require any internal bundled energy within the PV generation system to achieve FR capability, but it effectively collaborates with the system-level energy storage system, thus reducing the necessary battery capacity. A detailed dynamic model of a PV generation system is constructed to validate the feasibility and effectiveness of the proposed control strategy.

Funder

Zhejiang Provincial Natural Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3