A Novel JSF-Based Fast Implementation Method for Multiple-Point Multiplication

Author:

Chen Xinze12ORCID,Fu Yong123ORCID

Affiliation:

1. Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China

2. Shandong Provincial Key Laboratory of Computer Networks, Shandong Fundamental Research Center for Computer Science, Jinan 250014, China

3. Quan Cheng Laboratory, Jinan 250103, China

Abstract

ECC is a popular public-key cryptographic algorithm, but it lacks an effective solution to multiple-point multiplication. This paper proposes a novel JSF-based fast implementation method for multiple-point multiplication. The proposed method requires a small storage space and has high performance, making it suitable for resource-constrained IoT application scenarios. This method stores and encodes the required coordinates in the pre-computation phase and uses table lookup operations to eliminate the conditional judgment operations in JSF-5, which improves the efficiency by about 70% compared to the conventional JSF-5 in generating the sparse form. This paper utilizes Co-Z combined with safegcd to achieve low computational complexity for curve coordinate pre-computation, which further reduces the complexity of multiple-point multiplication in the execution phase of the algorithm. The experiments were performed with two short Weierstrass elliptic curves, nistp256r1 and SM2. In comparison to the various CPU architectures used in the experiments, our proposed method showed an improvement of about 3% over 5-NAF.

Funder

Basic Research Program of Qilu University of Technology

Quan Cheng Laboratory

Pilot Project for Integrated Innovation of Science, Education and Industry of Qilu University of Technology

Fundamental Research Fund of Shandong Academy of Sciences

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3