A CEI-Based Method for Precise Tracking and Measurement of LEO Satellites in Future Mega-Constellation Missions

Author:

Zhang Entao12,Wu Tao12,Hu Minchao12,Yang Wenge12,Ma Hong12,Jiao Yiwen12,Shi Xueshu12,Gao Zefu12

Affiliation:

1. Department of Electrical and Optical Engineering, Space Engineering University, Beijing 101400, China

2. Key Laboratory of Intelligent Space TTC and Operation, Space Engineering University, Ministry of Education, Beijing 101400, China

Abstract

With the development of low-orbit mega-constellations, low-orbit navigation augmentation systems, and other emerging LEO projects, the tracking accuracy requirement for low-orbit satellites is constantly increasing. However, existing methods have obvious shortcomings, and a new tracking and measurement method for LEO satellites is thus urgently needed. Given this, in this paper, a Connected Element Interferometry (CEI)-based “near-field” measurement model for low-orbit satellites is proposed. On this basis, the goniometric error formula of the model is derived, and the factors included in each error source are briefly discussed, followed by the simplification of the error formula. Furthermore, for the feasibility analysis of the proposed method, the common view time of CEI array on LEO satellites is analyzed in different regions and different baseline lengths. Finally, this paper simulates the effects of satellite–station distance, baseline length, and goniometric angle on the error coefficients in the goniometric error formula, and provides the theoretical goniometric accuracy of this model for different baseline lengths and goniometric angles. Under a baseline length of 240 km, the accuracy can reach 10 nrad. The research results of this paper could play the role of theoretical a priori in accuracy prediction in future low-orbit satellite tracking measurements.

Funder

Major Science and Technology Projects of Beijing

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3