Leveraging Edge Computing ML Model Implementation and IoT Paradigm towards Reliable Postoperative Rehabilitation Monitoring

Author:

Faliagka Evanthia1ORCID,Skarmintzos Vasileios1,Panagiotou Christos12,Syrimpeis Vasileios13ORCID,Antonopoulos Christos P.1ORCID,Voros Nikolaos1

Affiliation:

1. Electrical & Computer Engineering Department, University of Peloponnese, M. Alexandrou 1, 22100 Patras, Greece

2. AVN Innovative Technology Solutions Ltd., 4652 Limassol, Cyprus

3. “Agios Andreas”, General Hospital of Patras, Kalavryton 37, 26332 Patras, Greece

Abstract

In this work, an IoT system with edge computing capability is proposed, facilitating the postoperative surveillance of patients who have undergone knee surgery. The main objective is to reliably identify whether a set of orthopedic rehabilitation exercises is executed correctly, which is critical since it is often necessary to supervise patients during the rehabilitation period so as to avoid injuries or long recovery periods. The proposed system leverages the Internet of Things (IoT) paradigm in combination with deep learning and edge computing to classify the extension–flexion movement of one’s knee via embedded machine learning (ML) classification algorithms. The contribution of the proposed work is multilayered, as this paper proposes a system tackling the challenges at the embedded system level, algorithmic level, and user-friendliness level considering a performance evaluation, including the metrics at the power consumption level, delay level, and throughput requirement level, as well as its accuracy and reliability. Furthermore, as an outcome of this work, a dataset of labeled knee movements is freely available to the research community with no limitations. It also provides real-time movement detection with an accuracy reaching 100%, which is achieved with an ML model trained to fit a low-cost off-the-shelf Bluetooth Low Energy platform. The proposed edge computing approach allows predictions to be performed on device rather than solely relying on a Cloud service. This yields critical benefits in terms of wireless bandwidth and power conservation, drastically enhancing device autonomy while delivering reduced event detection latency. In particular, the “on device” implementation is able to yield a drastic 99.9% wireless data transfer reduction, a critical 39% prediction delay reduction, and a valuable 17% increase in the event prediction rate considering a reference period of 60 s. Finally, enhanced privacy comprises another significant benefit from the implemented edge computing ML model, as sensitive data can be processed on site and only events or predictions are shared with medical personnel.

Funder

European Union’s Horizon 2020 Research and Innovation Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-Time Monitoring and Anomaly Detection in Hospital IoT Networks Using Machine Learning;2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI);2023-12-29

2. From Embedded to AI-powered Cyberphysical Systems and Beyond;2023 30th International Conference on Mixed Design of Integrated Circuits and System (MIXDES);2023-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3