GymHydro: An Innovative Modular Small-Scale Smart Agriculture System for Hydroponic Greenhouses

Author:

Bua Cristian1ORCID,Adami Davide2ORCID,Giordano Stefano12

Affiliation:

1. Department of Information Engineering, University of Pisa, 56122 Pisa, Italy

2. CNIT—Department of Information Engineering, University of Pisa, 56122 Pisa, Italy

Abstract

In response to the challenges posed by climate change, including extreme weather events, such as heavy rainfall and droughts, the agricultural sector is increasingly seeking solutions for the efficient use of resources, particularly water. Pivotal aspects of smart agriculture include the establishment of weather-independent systems and the implementation of precise monitoring and control of plant growth and environmental conditions. Hydroponic cultivation techniques have emerged as transformative solutions with the potential to reduce water consumption for cultivation and offer a sheltered environment for crops, protecting them from the unpredictable impacts of climate change. However, a significant challenge lies in the frequent need for human intervention to ensure the efficiency and effectiveness of these systems. This paper introduces a novel system with a modular architecture, offering the ability to incorporate new functionalities without necessitating a complete system redesign. The autonomous hydroponic greenhouse, designed and implemented in this study, maintains stable environmental parameters to create an ideal environment for cultivating tomato plants. Actuators, receiving commands from a cloud application situated at the network’s edge, automatically regulate environmental conditions. Decision-making within this application is facilitated by a PID control algorithm, ensuring precision in control commands transmitted through the MQTT protocol and the NGSI-LD message format. The system transitioned from a single virtual machine in the public cloud to edge computing, specifically on a Raspberry Pi 3, to address latency concerns. In this study, we analyzed various delay aspects and network latency to better understand their significance in delays. This transition resulted in a significant reduction in communication latency and a reduction in total service delay, enhancing the system’s real-time responsiveness. The utilization of LoRa communication technology connects IoT devices to a gateway, typically located at the main farm building, addressing the challenge of limited Internet connectivity in remote greenhouse locations. Monitoring data are made accessible to end-users through a smartphone app, offering real-time insights into the greenhouse environment. Furthermore, end-users have the capability to modify system parameters manually and remotely when necessary. This approach not only provides a robust solution to climate-induced challenges but also enhances the efficiency and intelligence of agricultural practices. The transition to digitization poses a significant challenge for farmers. Our proposed system not only represents a step forward toward sustainable and precise agriculture but also serves as a practical demonstrator, providing farmers with a key tool during this crucial digital transition. The demonstrator enables farmers to optimize crop growth and resource management, concretely showcasing the benefits of smart and precise agriculture.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3