Improving sEMG-Based Hand Gesture Recognition through Optimizing Parameters and Sliding Voting Classifiers

Author:

Zhang Ming12ORCID,Liu Shizhao12,Li Xiao12,Qu Leyi12,Zhuang Bowen12,Han Gujing12

Affiliation:

1. School of Electronic & Electrical Engineering, Wuhan Textile University, Wuhan 430200, China

2. State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China

Abstract

In this paper, we present a preliminary study that proposes to improve surface electromyography (sEMG)-based hand gesture recognition through optimizing parameters and sliding voting classifiers. Targeting the high-performing myoelectric control system, the traditional methods for hand gesture recognition still need to further improve the classification accuracy and utilization rate for sEMG signals. Therefore, the proposed method first optimizes parameters to reduce redundant information by selecting the proper values for the window length, the overlapping rate, the number of channels, and the features of sEMG signals. In addition, the random forest (RF) classifier is an advanced classifier for sEMG-based hand gesture recognition. To further improve classification performance, this paper proposes a sliding voting random forest (SVRF) classifier which can reduce potential pseudo decisions made by the RF classifier. Finally, experiments were conducted using two sEMG datasets, named DB2 and DB4, from the NinaPro database, as well as self-collected data. The results illustrate a certain improvement in classification accuracy based on the optimized values for window length, overlapping rate, number of channels, and features of sEMG signals. And the SVRF classifier can significantly improve performance with higher accuracy compared with the traditional linear discriminate analysis (LDA), k-nearest neighbors (KNN), support vector machine (SVM), and RF classifiers.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3