Multi-Time-Scale Energy Storage Optimization Configuration for Power Balance in Distribution Systems

Author:

Lu Qiuyu1,Zhang Xiaoman2,Yang Yinguo1,Hu Qianwen2,Wu Guobing1,Huang Yuxiong2ORCID,Liu Yang1,Li Gengfeng2

Affiliation:

1. Guangdong Power Grid Dispatch and Control Center, Guangzhou 510600, China

2. State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

As the adoption of renewable energy sources grows, ensuring a stable power balance across various time frames has become a central challenge for modern power systems. In line with the “dual carbon” objectives and the seamless integration of renewable energy sources, harnessing the advantages of various energy storage resources and coordinating the operation of long-term and short-term storage have become pivotal directions for future energy storage deployment. To address the complexities arising from the coupling of different time scales in optimizing energy storage capacity, this paper proposes a method for energy storage planning that accounts for power imbalance risks across multiple time scales. Initially, the Seasonal and Trend decomposition using the Loess (STL) decomposition method is utilized to temporally decouple actual operational data. Subsequently, power balance computations are performed based on the obtained data at various time scales to optimize the allocation of different types of energy storage capacities and assess the associated imbalance risks. Finally, the effectiveness of the proposed approach is validated through hourly applications using real-world data from a province in southern China over recent years.

Funder

Science and Technology Project of China Southern Power Grid Corporation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3