Aero-YOLO: An Efficient Vehicle and Pedestrian Detection Algorithm Based on Unmanned Aerial Imagery

Author:

Shao Yifan1,Yang Zhaoxu1,Li Zhongheng1,Li Jun2

Affiliation:

1. School of Computer and Communication Technology, Lanzhou University of Technology, Lanzhou 730050, China

2. Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou 730050, China

Abstract

The cost-effectiveness, compact size, and inherent flexibility of UAV technology have garnered significant attention. Utilizing sensors, UAVs capture ground-based targets, offering a novel perspective for aerial target detection and data collection. However, traditional UAV aerial image recognition techniques suffer from various drawbacks, including limited payload capacity, resulting in insufficient computing power, low recognition accuracy due to small target sizes in images, and missed detections caused by dense target arrangements. To address these challenges, this study proposes a lightweight UAV image target detection method based on YOLOv8, named Aero-YOLO. The specific approach involves replacing the original Conv module with GSConv and substituting the C2f module with C3 to reduce model parameters, extend the receptive field, and enhance computational efficiency. Furthermore, the introduction of the CoordAtt and shuffle attention mechanisms enhances feature extraction, which is particularly beneficial for detecting small vehicles from a UAV perspective. Lastly, three new parameter specifications for YOLOv8 are proposed to meet the requirements of different application scenarios. Experimental evaluations were conducted on the UAV-ROD and VisDrone2019 datasets. The results demonstrate that the algorithm proposed in this study improves the accuracy and speed of vehicle and pedestrian detection, exhibiting robust performance across various angles, heights, and imaging conditions.

Funder

National Natural Science Foundation of China

National Undergraduate Innovation and Entrepreneurship Training Program

Publisher

MDPI AG

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3