Variational Mode Decomposition-Based Processing for Detection of Short-Circuited Turns in Transformers Using Vibration Signals and Machine Learning

Author:

Camarena-Martinez David1ORCID,Huerta-Rosales Jose R.2ORCID,Amezquita-Sanchez Juan P.2ORCID,Granados-Lieberman David3ORCID,Olivares-Galvan Juan C.4ORCID,Valtierra-Rodriguez Martin2ORCID

Affiliation:

1. ENAP-RG, División de Ingeniería, Campus Irapuato-Salamanca, Universidad de Guanajuato (UG), Carretera Salamanca-Valle de Santiago km 3.5 + 1.8 km, Comunidad de Palo Blanco, Salamanca CP 36885, Mexico

2. ENAP-RG, CA-Sistemas Dinámicos y Control, Facultad de Ingeniería, Campus San Juan del Río, Universidad Autónoma de Querétaro (UAQ), Rio Moctezuma 249, San Cayetano, San Juan del Río CP 76807, Mexico

3. ENAP-RG, CA-Fuentes Alternas y Calidad de la Energía Eléctrica, Departamento de Ingeniería Electromecánica, Tecnológico Nacional de México/ITS de Irapuato, Carretera Irapuato-Silao km 12.5, Colonia El Copal, Irapuato CP 36821, Mexico

4. Departamento de Energía, Universidad Autónoma Metropolitana, Ciudad de México CP 02128, Mexico

Abstract

Transformers are key elements in electrical systems. Although they are robust machines, different faults can appear due to their inherent operating conditions, e.g., the presence of different electrical and mechanical stresses. Among the different elements that compound a transformer, the winding is one of the most vulnerable parts, where the damage of turn-to-turn short circuits is one of the most studied faults since low-level damage (i.e., a low number of short-circuited turns—SCTs) can lead to the overall fault of the transformer; therefore, early fault detection has become a fundamental task. In this regard, this paper presents a machine learning-based method to diagnose SCTs in the transformer windings by using their vibrational response. In general, the vibration signals are firstly decomposed by means of the variational mode decomposition method, where a comparison with the empirical mode decomposition (EMD) method and the ensemble empirical mode decomposition (EEMD) method is also carried out. Then, entropy, energy, and kurtosis indices are obtained from each decomposition as fault indicators, where both the combination of features and the dimensionality reduction by using the principal component analysis (PCA) method are analyzed for the global effectiveness improvement and the computational burden reduction. Finally, a pattern recognition algorithm based on artificial neural networks (ANNs) is used for automatic fault detection. The obtained results show 100% effectiveness in detecting seven fault conditions, i.e., 0 (healthy), 5, 10, 15, 20, 25, and 30 SCTs.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vibration characteristics of ±800 kV converter transformers part I: Under no-load conditions;International Journal of Electrical Power & Energy Systems;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3