Causal-Based Approaches to Explain and Learn from Self-Extension—A Review

Author:

Marfil Rebeca1ORCID,Bustos Pablo2ORCID,Bandera Antonio1ORCID

Affiliation:

1. Departamento Tecnología Electrónica, University of Málaga, 29071 Málaga, Spain

2. Departamento Tecnologías de los Computadores y las Comunicaciones, University of Extremadura, 10005 Cáceres, Spain

Abstract

The last decades have seen a revolution in autonomous robotics. Deep learning approaches and their hardware implementations have made it possible to endow robots with extraordinary perceptual capabilities. In addition, they can benefit from advances in Automated Planning, allowing them to autonomously solve complex tasks. However, on many occasions, the robot still acts without internalising and understanding the reasons behind a perception or an action, beyond an immediate response to a current state of the context. This gap results in limitations that affect its performance, reliability, and trustworthiness. Deep learning alone cannot bridge this gap because the reasons behind behaviour, when it emanates from a model in which the world is a black-box, are not accessible. What is really needed is an underlying architecture based on deeper reasoning. Among other issues, this architecture should enable the robot to generate explanations, allowing people to know why the robot is performing, or has performed, a certain action, or the reasons that may have caused a certain plan failure or perceptual anomaly. Furthermore, when these explanations arise from a cognitive process and are shared, and thus validated, with people, the robot should be able to incorporate these explanations into its knowledge base, and thus use this understanding to improve future behaviour. Our article looks at recent advances in the development of self-aware, self-evolving robots. These robots are designed to provide the necessary explanations to their human counterparts, thereby enhancing their functional capabilities in the quest to gain their trust.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3