Affiliation:
1. School of Integrated Circuits, Anhui University, Hefei 230601, China
Abstract
In this paper, an n-i-p-type GaN barrier for the final quantum well, which is closest to the p-type GaN cap layer, is proposed for nitride light-emitting diodes (LEDs) to enhance the confinement of electrons and to improve the efficiency of hole injection. The performances of GaN-based LEDs with a traditional GaN barrier and with our proposed n-i-p GaN barrier were simulated and analyzed in detail. It was observed that, with our newly designed n-i-p GaN barrier, the performances of the LEDs were improved, including a higher light output power, a lower threshold voltage, and a stronger electroluminescence emission intensity. The light output power can be remarkably boosted by 105% at an injection current density of 100 A/cm2 in comparison with a traditional LED. These improvements originated from the proposed n-i-p GaN barrier, which induces a strong reverse electrostatic field in the n-i-p GaN barrier. This field not only enhances the confinement of electrons but also improves the efficiency of hole injection.
Funder
Anhui Provincial Natural Science Foundation
Hefei Municipal Natural Science Foundation
National Key Research and Development Program of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献