Affiliation:
1. Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
2. University of Chinese Academy of Sciences, Beijing 101408, China
Abstract
Carbon nanotubes have excellent electrical properties and can be used as a new generation of semiconductor materials. This paper presents a compact model for carbon nanotube field-effect transistors (CNTFETs). The model uses a semi-empirical approach to model the current–voltage properties of CNTFETs with gate lengths exceeding 100 nm. This study introduces an innovative approach by proposing physical parametric reference lengths (Lref), which facilitate the integration of devices of varying sizes into a unified modeling framework. Furthermore, this paper develops models for the bipolar properties of carbon nanotube devices, employing two distinct sets of model parameters for enhanced accuracy. The model offers a comprehensive analysis of the different capacitances occurring between the electrodes within the device. The simulation of the model shows good agreement with the experimental measurements, confirming the model’s validity. The model is implemented in the Verilog-A hardware description language, with the circuit being subsequently constructed and subjected to simulations via the HSPICE tool. The CNTFET-based inverter exhibits a gain of 7.022 and a delay time of 16.23 ps when operated at a voltage of 1.2 V.
Funder
National Key R & D Program of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献