Generative Design of the Architecture Platform in Multiprocessor System Design

Author:

Müller Luise1ORCID,Schumacher Nico1ORCID,Steffen Lukas1ORCID,Haubelt Christian1ORCID

Affiliation:

1. Applied Microelectronics and Computer Engineering, University of Rostock, 18059 Rostock, Germany

Abstract

When designing a system at the Electronic System Level (ESL), designers are confronted with a very large number of design decisions, each affecting the characteristics of the resulting system. Simultaneously, the demands for the system’s performance, reliability, and energy consumption have increased drastically. Design Space Exploration (DSE) aims to facilitate this complex task by automating the system synthesis and traversing the design space autonomously. Previous studies on DSE have mainly considered fixed architectures with a fixed set of hardware components only. In the paper at hand, we overcome this limitation to allow for a higher degree of freedom in the design of a multiprocessor system. Instead of a fixed architecture as input, we are using a resource library containing resource types whose instances can then be arbitrarily placed and connected. More specifically, we enable the exploration of the types, the number, and the positions of required processing-type instances in a grid-based topology template in addition to deciding on the remaining system synthesis tasks, namely, resource allocation, task binding, routing, and scheduling. We provide an extensible framework, based on Answer Set Programming (ASP) modulo Theories (ASPmT), for generating system architectures fulfilling predefined constraints. Our studies show that this higher degree of freedom, originating from fewer restrictions regarding the architecture, leads to an increased complexity of the problem. In extensive experiments, we show scalability trends for a set of parameters, demonstrating the capabilities and limits of our approach.

Funder

German Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3