Global Maximum Power Point Tracking of Photovoltaic Module Arrays Based on an Improved Intelligent Bat Algorithm

Author:

Chao Kuei-Hsiang1ORCID,Bau Thi Thanh Truc1

Affiliation:

1. Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan

Abstract

In this paper, a method based on an improved intelligent bat algorithm (IIBA) in cooperation with a voltage and current sensor was applied in maximum power point tracking (MPPT) for a photovoltaic module array (PVMA), where the power generation performance of a PVMA was enhanced. Due to the partial shading of the PVMA from climate changes or the surrounding environment, multiple peak values were generated on the power–voltage (P-V) curve, where the conventional MPPT technology could only track the local maximum power point (LMPP), hence the reduction in output power of PVMAs. Therefore, the IIBA-based MPPT was proposed in this paper to solve such issues and to ensure the capability of a PVMA in tracking the global maximum power point (GMPP) and utilization for enhancing the output power of a PVMA. Firstly, the Matlab/Simulink software was used to establish a boost converter model that simulated the actual 4-series–3-parallel PVMA under different shaded conditions, where the P-V curve with 1-peak, 2-peak, 3-peak and 4-peak values were generated. Subsequently, the tracking paces of the conventional bat algorithm (BA) were adjusted according to the gradient of the P-V curve for a PVMA. At the same time, 0.8 times the maximum power point (MPP) voltage Vmp under standard test conditions (STCs) for a PVMA was set as the initial tracking voltage. Lastly, the simulation results proved that under different environmental impacts, the proposed IIBA led to better performances in tracking both dynamic and steady responses.

Funder

National Science and Technology Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3