SM9 Identity-Based Encryption with Designated-Position Fuzzy Equality Test

Author:

Dong Siyue1ORCID,Zhao Zhen1ORCID,Wang Baocang1,Gao Wen2,Zhang Shanshan3

Affiliation:

1. The State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China

2. School of Cyberspace Security, Xi’an University of Posts & Telecommunications, Xi’an 710121, China

3. School of Mathematics and Information Science, Baoji University of Arts and Science, Baoji 721016, China

Abstract

Public key encryption with equality test (PKEET) is a cryptographic primitive that enables a tester to determine whether two ciphertexts encrypted with same or different public keys have been generated from the same message without decryption. Previous studies extended PKEET to public key encryption with designated-position fuzzy equality test (PKE-DFET), enabling testers to verify whether plaintexts corresponding to two ciphertexts are equal while ignoring specific bits at designated positions. In this work, we have filled the research gap in the identity-based encryption (IBE) cryptosystems for this primitive. Furthermore, although our authorization method is the all-or-nothing (AoN) type, it overcomes the shortcomings present in the majority of AoN-type authorization schemes. In our scheme, equality tests can only be performed between a ciphertext and a given plaintext. Specifically, even if a tester acquires multiple AoN-type authorizations, it cannot conduct unpermitted equality tests between users. This significantly reduces the risk of user privacy leaks when handling sensitive information in certain scenarios, while still retaining the flexible and simple characteristics of AoN-type authorizations. We use the Chinese national cryptography standard SM9-IBE algorithm to provide the concrete construction of our scheme, enhancing the usability and security of our scheme, while making deployment more convenient. Finally, we prove that our scheme achieves F-OW-ID-CCA security when the adversary has the trapdoor of the challenge ciphertext, and achieves IND-ID-CCA security when the adversary does not have the trapdoor of the challenge ciphertext.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Youth Innovation Team of Shaanxi Universities, Science and Technology on Communication Security Laboratory Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3