QWLCPM: A Method for QoS-Aware Forwarding and Caching Using Simple Weighted Linear Combination and Proximity for Named Data Vehicular Sensor Network

Author:

Dhakal Dependra1ORCID,Sharma Kalpana1ORCID

Affiliation:

1. Sikkim Manipal Institute of Technology, Sikkim Manipal University, Majhitar, Rangpo 737136, India

Abstract

The named data vehicular sensor network (NDVSN) has become an increasingly important area of research because of the increasing demand for data transmission in vehicular networks. In such networks, ensuring the quality of service (QoS) of data transmission is essential. The NDVSN is a mobile ad hoc network that uses vehicles equipped with sensors to collect and disseminate data. QoS is critical in vehicular networks, as the data transmission must be reliable, efficient, and timely to support various applications. This paper proposes a QoS-aware forwarding and caching algorithm for NDVSNs, called QWLCPM (QoS-aware Forwarding and Caching using Weighted Linear Combination and Proximity Method). QWLCPM utilizes a weighted linear combination and proximity method to determine stable nodes and the best next-hop forwarding path based on various metrics, including priority, signal strength, vehicle speed, global positioning system data, and vehicle ID. Additionally, it incorporates a weighted linear combination method for the caching mechanism to store frequently accessed data based on zone ID, stability, and priority. The performance of QWLCPM is evaluated through simulations and compared with other forwarding and caching algorithms. QWLCPM’s efficacy stems from its holistic decision-making process, incorporating spatial and temporal elements for efficient cache management. Zone-based caching, showcased in different scenarios, enhances content delivery by utilizing stable nodes. QWLCPM’s proximity considerations significantly improve cache hits, reduce delay, and optimize hop count, especially in scenarios with sparse traffic. Additionally, its priority-based caching mechanism enhances hit ratios and content diversity, emphasizing QWLCPM’s substantial network-improvement potential in vehicular environments. These findings suggest that QWLCPM has the potential to greatly enhance QoS in NDVSNs and serve as a promising solution for future vehicular sensor networks. Future research could focus on refining the details of its implementation, scalability in larger networks, and conducting real-world trials to validate its performance under dynamic conditions.

Publisher

MDPI AG

Reference33 articles.

1. Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H., and Braynard, R.L. (2009, January 1–4). Networking named content. Proceedings of the 5th International Conference on Emerging Networking Experiments and Technologies, Rome, Italy.

2. Information-centric mobile ad hoc networks and content routing: A survey;Liu;Ad Hoc Netw.,2017

3. Rashid, S.A., Hamdi, M.M., and Alani, S. (2020, January 26–27). An overview on quality of service and data dissemination in VANETs. Proceedings of the 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara, Turkey.

4. Named data networking;Zhang;ACM SIGCOMM Comput. Commun. Rev.,2014

5. A survey of data dissemination schemes in vehicular named data networking;Sundararajan;Veh. Commun.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3