Incorporating Entity Type-Aware and Word–Word Relation-Aware Attention in Generative Named Entity Recognition

Author:

Mo Ying1ORCID,Li Zhoujun1

Affiliation:

1. State Key Lab of Software Development Environment, Beihang University, Beijing 100191, China

Abstract

Named entity recognition (NER) is a critical subtask in natural language processing. It is particularly valuable to gain a deeper understanding of entity boundaries and entity types when addressing the NER problem. Most previous sequential labeling models are task-specific, while recent years have witnessed the rise of generative models due to the advantage of tackling NER tasks in the encoder–decoder framework. Despite achieving promising performance, our pilot studies demonstrate that existing generative models are ineffective at detecting entity boundaries and estimating entity types. In this paper, a multiple attention framework is proposed which introduces the attention of entity-type embedding and word–word relation into the named entity recognition task. To improve the accuracy of entity-type mapping, we adopt an external knowledge base to calculate the prior entity-type distributions and then incorporate the information input to the model via the encoder’s self-attention. To enhance the contextual information, we take the entity types as part of the input. Our method obtains the other attention from the hidden states of entity types and utilizes it in self- and cross-attention mechanisms in the decoder. We transform the entity boundary information in the sequence into word–word relations and extract the corresponding embedding into the cross-attention mechanism. Through word–word relation information, the method can learn and understand more entity boundary information, thereby improving its entity recognition accuracy. We performed experiments on extensive NER benchmarks, including four flat and two long entity benchmarks. Our approach significantly improves or performs similarly to the best generative NER models. The experimental results demonstrate that our method can substantially enhance the capabilities of generative NER models.

Funder

National Natural Science Foundation of China

State Key Laboratory of Software Development Environment

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3