Interpretable Geometry Problem Solving Using Improved RetinaNet and Graph Convolutional Network

Author:

Jian Pengpeng1,Guo Fucheng2,Pan Cong1,Wang Yanli3,Yang Yangrui1,Li Yang1

Affiliation:

1. School of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

2. Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan 430079, China

3. College of Marxism, Henan University of Economics and Law, Zhengzhou 450046, China

Abstract

This paper proposes an interpretable geometry solution based on the formal language set of text and diagram. Geometry problems are solved using machines; however, machines encounter challenges in natural language processing and computer vision. Significant progress has improved existing methods in the extraction of geometric formal languages. However, the neglect of the graph structure information in the formal language and the lack of further refinement of the extracted language set can lead to poor theorem prediction and poor accuracy in problem solving. In this paper, a formal language graph is constructed using the extracted formal language set and applied to theorem prediction using a graph convolutional network. To better extract the relationship set of diagram elements, an improved diagram parser is proposed. The test results indicate that the improved method has good results when solving interpretable geometry problems.

Funder

National Natural Science Foundation of China

Science Foundation of Henan Province

Major Project on Research and Practice of Higher Education Teaching Reform in Henan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3