Joint Overlapping Event Extraction Model via Role Pre-Judgment with Trigger and Context Embeddings

Author:

Chen Qian1,Yang Kehan1,Guo Xin1,Wang Suge12ORCID,Liao Jian1,Zheng Jianxing12ORCID

Affiliation:

1. School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China

2. Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, Shanxi University, Taiyuan 030006, China

Abstract

The objective of event extraction is to recognize event triggers and event categories within unstructured text and produce structured event arguments. However, there is a common phenomenon of triggers and arguments of different event types in a sentence that may be the same word elements, which poses new challenges to this task. In this article, a joint learning framework for overlapping event extraction (ROPEE) is proposed. In this framework, a role pre-judgment module is devised prior to argument extraction. It conducts role pre-judgment by leveraging the correlation between event types and roles, as well as trigger embeddings. Experiments on the FewFC show that the proposed model outperforms other baseline models in terms of Trigger Classification, Argument Identification, and Argument Classification by 0.4%, 0.9%, and 0.6%. In scenarios of trigger overlap and argument overlap, the proposed model outperforms the baseline models in terms of Argument Identification and Argument Classification by 0.9%, 1.2%, 0.7%, and 0.6%, respectively, indicating the effectiveness of ROPEE in solving overlapping events.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Shanxi Province of China

CCF-Zhipu AI Large Model Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3