Hierarchical Classification for Large-Scale Learning

Author:

Wang Boshi1,Barbu Adrian1ORCID

Affiliation:

1. Statistics Department, Florida State University, Tallahassee, FL 32306, USA

Abstract

Deep neural networks (DNNs) have drawn much attention due to their success in various vision tasks. Current DNNs are used on data with a relatively small number of classes (e.g., 1000 or less) and employ a fully connected layer for classification, which allocates one neuron for each class and thus, per-example, the classification scales as O(K) with the number of classes K. This approach is computationally intensive for many real-life applications where the number of classes is very large (e.g., tens of thousands of classes). To address this problem, our paper introduces a hierarchical approach for classification with a large number of classes that scales as O(K) and could be extended to O(logK) with a deeper hierarchy. The method, called Hierarchical PPCA, uses a self-supervised pretrained feature extractor to obtain meaningful features and trains Probabilistic PCA models on the extracted features for each class separately, making it easy to add classes without retraining the whole model. The Mahalanobis distance is used to obtain the classification result. To speed-up classification, the proposed Hierarchical PPCA framework clusters the image class models, represented as Gaussians, into a smaller number of super-classes using a modified k-means clustering algorithm. The classification speed increase is obtained by Hierarchical PPCA assigning a sample to a small number of the most likely super-classes and restricting the image classification to the image classes corresponding to these super-classes. The fact that the model is trained on each class separately makes it applicable to training on very large datasets such as the whole ImageNet with more than 10,000 classes. Experiments on three standard datasets (ImageNet-100, ImageNet-1k,and ImageNet-10k) indicate that the hierarchical classifier can achieve a superior accuracy with up to a 16-fold speed increase compared to a standard fully connected classifier.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference34 articles.

1. He, K., Zhang, X., Ren, S., and Sun, J. (2015, January 7–13). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile.

2. Learning to match anchors for visual object detection;Zhang;IEEE Trans. Pattern Anal. Mach. Intell.,2021

3. Neural networks and their applications;Bishop;Rev. Sci. Instrum.,1994

4. Backpropagation through time: What it does and how to do it;Werbos;Proc. IEEE,1990

5. Samek, W., Wiegand, T., and Müller, K.R. (2017). Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3