Evaluation of the Effectiveness of Protecting Three-Dimensional Printers against Acoustic Infiltration

Author:

Stańczak Andrzej1ORCID,Kubiak Ireneusz1ORCID

Affiliation:

1. Electromagnetic Compatibility Department, Military Communication Institute—National Research Institute, Warszawska 22A Str., 05-130 Zegrze Poludniowe, Poland

Abstract

Three-dimensional printers are increasingly used in design work when designers want to quickly and inexpensively verify their solutions. However, based on the sounds made by the printer during its operation, it is possible to determine the shape of the printed object with quite high accuracy. The above fact should be taken into account if information about this object needs to be protected. The article presents a way to protect a 3D (Three-Dimensional) printer against acoustic infiltration. The research study was carried out using the Zortrax M200 Plus printer for LPD (Layer Plastic Deposition) technology, which is an equivalent of the popular FDM/FFT (Fused Deposition Modeling/Fused Filament Fabrication) 3D printing technology using thermoplastic. The frequencies of acoustic signals related to the operation of stepper motors and the printing platform were identified. These signals enable the reconstruction of the shape of printed objects. It was examined whether the appropriate type and required level of masking noise can be selected for a given type of printer in order to protect it against acoustic infiltration. The masking properties of selected color noises were compared with those of white noise and the optimal intensity levels were determined at which the acoustic safety of the tested printer can be ensured. It was underlined that the research results refer only to the tested printer and should not be generalized to other types of 3D printers.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3