Research on Lightweight-Based Algorithm for Detecting Distracted Driving Behaviour

Author:

Lou Chengcheng1,Nie Xin1ORCID

Affiliation:

1. School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan 430079, China

Abstract

In order to solve the existing distracted driving behaviour detection algorithms’ problems such as low recognition accuracy, high leakage rate, high false recognition rate, poor real-time performance, etc., and to achieve high-precision real-time detection of common distracted driving behaviours (mobile phone use, smoking, drinking), this paper proposes a driver distracted driving behaviour recognition algorithm based on YOLOv5. Firstly, to address the problem of poor real-time identification, the computational and parametric quantities of the network are reduced by introducing a lightweight network, Ghostnet. Secondly, the use of GSConv reduces the complexity of the algorithm and ensures that there is a balance between the recognition speed and accuracy of the algorithm. Then, for the problem of missed and misidentified cigarettes during the detection process, the Soft-NMS algorithm is used to reduce the problems of missed and false detection of cigarettes without changing the computational complexity. Finally, in order to better detect the target of interest, the CBAM is utilised to enhance the algorithm’s attention to the target of interest. The experiments show that on the homemade distracted driving behaviour dataset, the improved YOLOv5 model improves the mAP@0.5 of the YOLOv5s by 1.5 percentage points, while the computational volume is reduced by 7.6 GFLOPs, which improves the accuracy of distracted driving behaviour recognition and ensures the real-time performance of the detection speed.

Funder

Hubei Key Laboratory of Intelligent Robot of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3