Deep Learning-Based Small Target Detection for Satellite–Ground Free Space Optical Communications

Author:

Devkota Nikesh1ORCID,Kim Byung Wook1ORCID

Affiliation:

1. Department of Information and Communication Engineering, Changwon National University, Changwon 51140, Republic of Korea

Abstract

Free space optical (FSO) channels between a low earth orbit (LEO) satellite and a ground station (GS) use a highly directional optical beam that necessitates a continuous line-of-sight (LOS) connection. In this paper, we propose a deep neural network (DNN)-based small target detection method that detects the position of a LEO satellite in an infrared image, which can be used to determine the receiver alignment for establishing the LOS link. For the infrared small target detection task without excessive down-sampling, we design a target detection model using a modified ResNest-based feature extraction network (FEN), a custom feature pyramid network (FPN), and a target determination network (TDN). ResNest utilizes the feature map attention mechanism and multi-path propagation necessary for robust feature extraction of small infrared targets. The custom FPN combines multi-scale feature maps generated from the modified ResNest to obtain robust semantics across all scales. Finally, the semantically strong multi-scale feature maps are fed into the TDN to detect small infrared targets and determine their location in infrared images. Experimental results using two widely used point spread functions (PSFs) demonstrate that the proposed algorithm outperforms the conventional schemes and detects small targets with a true detection rate of 99.4% and 94.0%.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3