Reconfigurable Amplitude-Phase-Coding Metasurface with Flexible Beamforming Capability

Author:

Gao Lu1,Zhou Yuxin2,Zhu Hailiang2,Zheng Pei1,Liu Jiaqi1,He Zhonghang1,Xu Ziwei1,Cui Yichun1

Affiliation:

1. National Key Laboratory of Science and Technology on Test Physics and Numerical Mathematics, Beijing 100076, China

2. School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Recently, reconfigurable coding metasurfaces have attracted extensive attention due to their dynamic and flexible manipulation of electromagnetic (EM) waves, making them an effective solution to connect physical reality and information science. Nevertheless, most previously reported reconfigurable metasurfaces suffer from limited applications, as they solely possess either phase or amplitude modulation. In this article, we propose a reconfigurable coding metasurface that can regulate both phase and amplitude response independently. In the field of the metasurface, the phase response can tailor the wavefronts, and the amplitude response can adjust the redistribution of the energy of the EM waves. Specifically, by integrating a PIN diode into the meta-atom and controlling its bias voltage, the reflection phase can be switched between two opposite phases with a phase difference of about 180°, and the reflection amplitude can be manipulated from 0.02 to 0.98 continuously at 11 GHz. The unit element consists of simple multi-layer structures, reducing its production cost and processing difficulty. By loading 1-bit phase code and multi-bit amplitude code to each unit element severally, this metasurface can modulate the distribution of reflected EM waves in two-dimensional (2-D) space while simultaneously suppressing the sidelobes for any quantity of scattered beams over a wide operating band ranging from 10.5 to 11.5 GHz. This metasurface exhibits promising potential for manipulating the distribution of EM wave energy and shaping of EM beams, which can be expected to facilitate wireless communication technology.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3