Research on a Link Prediction Algorithm Based on Hypergraph Representation Learning

Author:

Fu Kang1,Yan Guanghui12,Luo Hao13,Chang Wenwen12,Li Jingwen12

Affiliation:

1. School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

2. Key Laboratory of Media Convergence Technology and Communication of Gansu Province, Lanzhou 730000, China

3. School of Information Science and Engineering, Gansu University of Traditional Chinese Medicine, Lanzhou 730013, China

Abstract

Link prediction is a crucial area of study within complex networks research. Mapping nodes to low-dimensional vectors through network embeddings is a vital technique for link prediction. Most of the existing methods employ “node–edge”-structured networks to model the data and learn node embeddings. In this paper, we initially introduce the Clique structure to enhance the existing model and investigate the impact of introducing two Clique structures (LECON: Learning Embedding based on Clique Of the Network) and nine motifs (LEMON: Learning Embedding based on Motif Of the Network), respectively, on experimental performance. Subsequently, we introduce a hypergraph to model the network and reconfigure the network by mapping hypermotifs to two structures: open hypermotif and closed hypermotif, respectively. Then, we introduce hypermotifs as supernodes to capture the structural similarity between nodes in the network (HMRLH: HyperMotif Representation Learning on Hypergraph). After that, taking into account the connectivity and structural similarity of the involved nodes, we propose the Depth and Breadth Motif Random Walk method to acquire node sequences. We then apply this method to the LEMON (LEMON-DB: LEMON-Depth and Breadth Motif Random Walk) and HMRLH (HMRLH-DB: HMRLH-Depth and Breadth Motif Random Walk) algorithms. The experimental results on four different datasets indicate that, compared with the LEMON method, the LECON method improves experimental performance while reducing time complexity. The HMRLH method, utilizing hypernetwork modeling, proves more effective in extracting node features. The LEMON-DB and HMRLH-DB methods, incorporating new random walk approaches, outperform the original methods in the field of link prediction. Compared with state-of-the-art baselines, the proposed approach in this paper effectively enhances link prediction accuracy, demonstrating a certain level of superiority.

Funder

National Natural Science Foundation of China

Natural Science Foundation for Young Scientists of Gansu Province

Gansu Provincial Science and Technology Plan Project

Scientific Research and Innovation Fund Project of Gansu University of Chinese Medicine

Special Funds for Guiding Local Scientific and Technological Development by the Central Government

Support Project for Youth Doctor in Colleges and Universities of Gansu Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3