Knowledge-Aware Graph Self-Supervised Learning for Recommendation

Author:

Li Shanshan12ORCID,Jia Yutong12,Wu You12,Wei Ning12,Zhang Liyan12,Guo Jingfeng12

Affiliation:

1. College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China

2. Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province, Qinhuangdao 066004, China

Abstract

Collaborative filtering (CF) based on graph neural networks (GNN) can capture higher-order relationships between nodes, which in turn improves recommendation performance. Although effective, GNN-based methods still face the challenges of sparsity and noise in real scenarios. In recent years, researchers have introduced graph self-supervised learning (SSL) techniques into CF to alleviate the sparse supervision problem. The technique first augments the data to obtain contrastive views and then utilizes the mutual information maximization to provide self-supervised signals for the contrastive views. However, the existing approaches based on graph self-supervised signals still face the following challenges: (i) Most of the works fail to effectively mine and exploit the supervised information from the item knowledge graph, resulting in suboptimal performance. (ii) Existing data augmentation methods are unable to fully exploit the potential of contrastive learning, because they primarily focus on the contrastive view of data structure changes and neglect the adjacent relationship among users and items. To address these issues, we propose a novel self-supervised learning approach, namely Knowledge-aware Graph Self-supervised Learning (KGSL). Specifically, we calculate node similarity based on semantic relations between items in the knowledge graph to generate a semantic-based item similarity graph. Then, the self-supervised learning contrast views are generated from both the user–item interaction graph and the item similarity graph, respectively. Maximization of the information from these contrastive views provides additional self-supervised signals to enhance the node representation capacity. Finally, we establish a joint training strategy for the self-supervised learning task and the recommendation task to further optimize the learning process of KGSL. Extensive comparative experiments as well as ablation experiments are conducted on three real-world datasets to verify the effectiveness of KGSL.

Funder

The S&T Program of Hebei

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3