A Systematic Evaluation: Fine-Grained CNN vs. Traditional CNN Classifiers

Author:

Anwar Saeed12ORCID,Barnes Nick3,Petersson Lars4

Affiliation:

1. Information and Computer Science Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

2. SDAIA-KFUPM Joint Research Center for Artificial Intelligence, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

3. School of Computing, The Australian National University (ANU), Canberra 2601, Australia

4. Data61-CSIRO, Black Mountain, Canberra 2601, Australia

Abstract

Fine-grained classifiers collect information about inter-class variations to best use the underlying minute and subtle differences. The task is challenging due to the minor differences between the colors, viewpoints, and structure in the same class entities. The classification becomes difficult and challenging due to the similarities between the differences in viewpoint with other classes and its own. This work investigates the performance of landmark traditional CNN classifiers, presenting top-notch results on large-scale classification datasets and comparing them against state-of-the-art fine-grained classifiers. This paper poses three specific questions. (i) Do the traditional CNN classifiers achieve comparable results to fine-grained classifiers? (ii) Do traditional CNN classifiers require any specific information to improve fine-grained ones? (iii) Do current traditional state-of-the-art CNN classifiers improve the fine-grained classification while utilized as a backbone? Therefore, we train the general CNN classifiers throughout this work without introducing any aspect specific to fine-grained datasets. We show an extensive evaluation on six datasets to determine whether the fine-grained classifier can elevate the baseline in their experiments. We provide ablation studies regarding efficiency, number of parameters, flops, and performance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3