Author:
Croce Vincenzo,Raveduto Giuseppe,Verber Matteo,Ziu Denisa
Abstract
The recent rise of renewable energy sources connected to the distribution networks and the high peak consumptions requested by electric vehicle-charging bring new challenges for network operators. To operate smart electricity grids, cooperation between grid-owned and third-party assets becomes crucial. In this paper, we propose a methodology that combines machine learning with multi-objective optimization to accurately plan the exploitation of the energy district’s flexibility with the objective of reducing peak consumption and avoiding reverse power flow. Using historical data, acquired by the smart meters deployed on the pilot district, the district’s power profile can be predicted daily and analyzed to identify potentially critical issues on the network. District’s resources, such as electric vehicles, charging stations, photovoltaic panels, buildings energy management systems, and energy storage systems, have been modeled by taking into account their operational constraints and the multi-objective optimization has been adopted to identify the usage pattern that better suits the distribution operator’s (DSO) needs. The district is subject to incentives and penalties based on its ability to respond to the DSO request. Analysis of the results shows that this methodology can lead to a substantial reduction of both the reverse power flow and peak consumption.
Funder
Innovation and Networks Executive Agency
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献