MDEAN: Multi-View Disparity Estimation with an Asymmetric Network

Author:

Pei Zhao,Wen Deqiang,Zhang Yanning,Ma Miao,Guo Min,Zhang XiuweiORCID,Yang Yee-Hong

Abstract

In recent years, disparity estimation of a scene based on deep learning methods has been extensively studied and significant progress has been made. In contrast, a traditional image disparity estimation method requires considerable resources and consumes much time in processes such as stereo matching and 3D reconstruction. At present, most deep learning based disparity estimation methods focus on estimating disparity based on monocular images. Motivated by the results of traditional methods that multi-view methods are more accurate than monocular methods, especially for scenes that are textureless and have thin structures, in this paper, we present MDEAN, a new deep convolutional neural network to estimate disparity using multi-view images with an asymmetric encoder–decoder network structure. First, our method takes an arbitrary number of multi-view images as input. Next, we use these images to produce a set of plane-sweep cost volumes, which are combined to compute a high quality disparity map using an end-to-end asymmetric network. The results show that our method performs better than state-of-the-art methods, in particular, for outdoor scenes with the sky, flat surfaces and buildings.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference40 articles.

1. Structure from motion;Szeliski,2011

2. Robust multi-view L2 triangulation via optimal inlier selection and 3D structure refinement

3. DPSNet: End-to-end Deep Plane Sweep Stereo;Im;arXiv,2019

4. Multi-View Stereo: A Tutorial

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3