Abstract
In recent years, disparity estimation of a scene based on deep learning methods has been extensively studied and significant progress has been made. In contrast, a traditional image disparity estimation method requires considerable resources and consumes much time in processes such as stereo matching and 3D reconstruction. At present, most deep learning based disparity estimation methods focus on estimating disparity based on monocular images. Motivated by the results of traditional methods that multi-view methods are more accurate than monocular methods, especially for scenes that are textureless and have thin structures, in this paper, we present MDEAN, a new deep convolutional neural network to estimate disparity using multi-view images with an asymmetric encoder–decoder network structure. First, our method takes an arbitrary number of multi-view images as input. Next, we use these images to produce a set of plane-sweep cost volumes, which are combined to compute a high quality disparity map using an end-to-end asymmetric network. The results show that our method performs better than state-of-the-art methods, in particular, for outdoor scenes with the sky, flat surfaces and buildings.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献