Abstract
This study evaluated the design of an energy-efficient ad-hoc network used for wildlife observations, particularly in order to understand the social relationships in an animal group, where the distance between individuals, i.e., proximity, can be used to measure a relationship. Our proposed network consists of a full mesh topology and contains nodes that communicate via Bluetooth Low Energy (BLE) in advertisement mode. The initial hardware configuration and software algorithm duty cycles the BLE communication to on and off states using a parameter called the BLE active triggering interval. The algorithm is improved by placing the BLE subsystem and CPU in deep sleep when there are no BLE or CPU tasks to process. This improves the power performance by up to 94.48%. To scale up power optimization and track the trade-off between power and throughput, we created a simulator that modeled our network with dynamic wireless sensor nodes. The simulator verified the base case hardware results. It also showed a median power performance increase of 97.79% in comparison to the base case, yet throughput decreased by 66.65%. The highest power performance increased by 98.89% when a wireless sensor node was configured with a BLE active triggering interval of 50 s and its CPU was set to 14 MHz; however, the simulator showed a throughput drop of 79.97%. Depending on the application, a design may tolerate the decline in throughput to achieve higher power performance.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference58 articles.
1. Accurate current measurement using drogued buoys employing Decca Navigator and Argos
2. Lotek Wireless—Fish and Wildlife Monitoringhttp://www.lotek.com/
3. Tiny Trackers Connect Endangered Rhinos to the Internet of Things to Fight Poachinghttps://reuters.screenocean.com/record/1369808
4. Premium Gps Telemetry Solutions for Wildlife and Livestockhttps://www.telemetrysolutions.com/
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献