Abstract
Computer-Aided Language Learning (CALL) is growing nowadays because learning new languages is essential for communication with people of different linguistic backgrounds. Mispronunciation detection is an integral part of CALL, which is used for automatic pointing of errors for the non-native speaker. In this paper, we investigated the mispronunciation detection of Arabic words using deep Convolution Neural Network (CNN). For automated pronunciation error detection, we proposed CNN features-based model and extracted features from different layers of Alex Net (layers 6, 7, and 8) to train three machine learning classifiers; K-nearest neighbor (KNN), Support Vector Machine (SVM) and Random Forest (RF). We also used a transfer learning-based model in which feature extraction and classification are performed automatically. To evaluate the performance of the proposed method, a comprehensive evaluation is provided on these methods with a traditional machine learning-based method using Mel Frequency Cepstral Coefficients (MFCC) features. We used the same three classifiers KNN, SVM, and RF in the baseline method for mispronunciation detection. Experimental results show that with handcrafted features, transfer learning-based method and classification based on deep features extracted from Alex Net achieved an average accuracy of 73.67, 85 and 93.20 on Arabic words, respectively. Moreover, these results reveal that the proposed method with feature selection achieved the best average accuracy of 93.20% than all other methods.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献