Abstract
Visual surveillance systems have been playing a vital role in human modern life with a large number of applications, ranging from remote home management, public security to traffic monitoring. The recent High Efficiency Video Coding (HEVC) scalable extension, namely SHVC, provides not only the compression efficiency but also the adaptive streaming capability. However, SHVC is originally designed for videos captured from generic scenes rather than from visual surveillance systems. In this paper, we propose a novel HEVC based surveillance scalable video coding (SSVC) framework. First, to achieve high quality inter prediction, we propose a long-term reference coding method, which adaptively exploits the temporal correlation among frames in surveillance video. Second, to optimize the SSVC compression performance, we design a quantization parameter adaptation mechanism in which the relationship between SSVC rate-distortion (RD) performance and the quantization parameter is statistically modeled by a fourth-order polynomial function. Afterwards, an appropriate quantization parameter is derived for frames at long-term reference position. Experiments conducted for a common set of surveillance videos have shown that the proposed SSVC significantly outperforms the relevant SHVC standard, notably by around 6.9% and 12.6% bitrate saving for the low delay (LD) and random access (RA) coding configurations, respectively while still providing a similar perceptual decoded frame quality.
Funder
Vietnam National University
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献