A Situation-Aware Scheme for Efficient Device Authentication in Smart Grid-Enabled Home Area Networks

Author:

Xiang AnhaoORCID,Zheng JunORCID

Abstract

Home area networks (HANs) are the most vulnerable part of smart grids since they are not directly controlled by utilities. Device authentication is one of most important mechanisms to protect the security of smart grid-enabled HANs (SG-HANs). In this paper, we propose a situation-aware scheme for efficient device authentication in SG-HANs. The proposed scheme utilizes the security risk information assessed by the smart home system with a situational awareness feature. A suitable authentication protocol with adequate security protection and computational and communication complexity is then selected based on the assessed security risk level. A protocol design of the proposed scheme considering two security risk levels is presented in the paper. The security of the design is verified by using both formal verification and informal security analysis. Our performance analysis demonstrates that the proposed scheme is efficient in terms of computational and communication costs.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Securing IoT Communication: A Steganographic Protocol for Efficient Mutual Authentication and Data Integrity;2024 IEEE 12th International Symposium on Signal, Image, Video and Communications (ISIVC);2024-05-21

2. A light weight mutual authentication and key generation scheme for RFID systems used in Medical IoT;2024 IEEE 3rd International Conference on Control, Instrumentation, Energy & Communication (CIEC);2024-01-25

3. An Enhanced Authentication Protocol Suitable for Constrained RFID Systems;IEEE Access;2024

4. A Secure Cross-Domain Access Control Scheme for Internet of Medical Things;2023 6th International Conference on Artificial Intelligence and Pattern Recognition (AIPR);2023-09-22

5. LCDMA: Lightweight Cross-Domain Mutual Identity Authentication Scheme for Internet of Things;IEEE Internet of Things Journal;2023-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3