Grasp Posture Control of Wearable Extra Robotic Fingers with Flex Sensors Based on Neural Network

Author:

Setiawan Joga Dharma,Ariyanto MochammadORCID,Munadi M.,Mutoha Muhammad,Glowacz AdamORCID,Caesarendra WahyuORCID

Abstract

This study proposes a data-driven control method of extra robotic fingers to assist a user in bimanual object manipulation that requires two hands. The robotic system comprises two main parts, i.e., robotic thumb (RT) and robotic fingers (RF). The RT is attached next to the user’s thumb, while the RF is located next to the user’s little finger. The grasp postures of the RT and RF are driven by bending angle inputs of flex sensors, attached to the thumb and other fingers of the user. A modified glove sensor is developed by attaching three flex sensors to the thumb, index, and middle fingers of a wearer. Various hand gestures are then mapped using a neural network. The input data of the robotic system are the bending angles of thumb and index, read by flex sensors, and the outputs are commanded servo angles for the RF and RT. The third flex sensor is attached to the middle finger to hold the extra robotic finger’s posture. Two force-sensitive resistors (FSRs) are attached to the RF and RT for the haptic feedback when the robot is worn to take and grasp a fragile object, such as an egg. The trained neural network is embedded into the wearable extra robotic fingers to control the robotic motion and assist the human fingers in bimanual object manipulation tasks. The developed extra fingers are tested for their capacity to assist the human fingers and perform 10 different bimanual tasks, such as holding a large object, lifting and operate an eight-inch tablet, and lifting a bottle, and opening a bottle cap at the same time.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3