Abstract
This study proposes a data-driven control method of extra robotic fingers to assist a user in bimanual object manipulation that requires two hands. The robotic system comprises two main parts, i.e., robotic thumb (RT) and robotic fingers (RF). The RT is attached next to the user’s thumb, while the RF is located next to the user’s little finger. The grasp postures of the RT and RF are driven by bending angle inputs of flex sensors, attached to the thumb and other fingers of the user. A modified glove sensor is developed by attaching three flex sensors to the thumb, index, and middle fingers of a wearer. Various hand gestures are then mapped using a neural network. The input data of the robotic system are the bending angles of thumb and index, read by flex sensors, and the outputs are commanded servo angles for the RF and RT. The third flex sensor is attached to the middle finger to hold the extra robotic finger’s posture. Two force-sensitive resistors (FSRs) are attached to the RF and RT for the haptic feedback when the robot is worn to take and grasp a fragile object, such as an egg. The trained neural network is embedded into the wearable extra robotic fingers to control the robotic motion and assist the human fingers in bimanual object manipulation tasks. The developed extra fingers are tested for their capacity to assist the human fingers and perform 10 different bimanual tasks, such as holding a large object, lifting and operate an eight-inch tablet, and lifting a bottle, and opening a bottle cap at the same time.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献