A Spline Kernel-Based Approach for Nonlinear System Identification with Dimensionality Reduction

Author:

Zhang WanxinORCID,Zhu Jihong

Abstract

This paper proposes a novel approach for identification of nonlinear systems. By transforming the data space into a feature space, kernel methods can be used for modeling nonlinear systems. The spline kernel is adopted to produce a Hilbert space. However, a problem exists as the spline kernel-based identification method cannot deal with data with high dimensions well, resulting in huge computational cost and slow estimation speed. Additionally, owing to the large number of parameters to be estimated, the amount of training data required for accurate identification must be large enough to satisfy the persistence of excitation conditions. To solve the problem, a dimensionality reduction strategy is proposed. Transformation of coordinates is made with the tool of differential geometry. The purpose of the transformation is that no intersection of information with relevance to the output will exist between different new states, while the states with no impact on the output are extracted, which are then abandoned when constructing the model. Then, the dimension of the kernel-based model is reduced, and the number of parameters to be estimated is also reduced. Finally, the proposed identification approach was validated by simulations performed on experimental data from wind tunnel tests. The identification result turns out to be accurate and effective with lower dimensions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3