An Integrated Approach for the Determination of Young’s Modulus of a Cantilever Beam Using Finite Element Analysis and the Digital Image Correlation (DIC) Technique

Author:

Loh Tick BoonORCID,Wu YutongORCID,Goh Siang Huat,Kong Kian Hau,Goh Kheng Lim,Chong Jun Jie

Abstract

This paper is an extended paper from the 24th International Conference on Mechatronics Technology, ICMT 2021. The basic mechanical characteristic that gauges the stiffness of a solid material is known as the Young’s modulus. To evaluate the Young’s modulus, destructive material testing is frequently used. This paper describes how to determine a material’s dynamic Young’s modulus using Digital Image Correlation (DIC) in conjunction with numerical back-analysis. Three different materials (brass, aluminum, and steel) were examined for their static and dynamic reactions. A static transverse displacement was first applied at the free end of the beam before it was released and the beam was allowed to vibrate freely. The resulting vibrations at the free end were monitored using the DIC method, following which the natural frequencies of the beam were derived by applying the Fast Fourier Transform (FFT) to the DIC measured time history. The Young’s modulus corresponding to the fundamental natural frequency of the beam was then obtained via modal back-analysis using the finite element program Ansys 2022 R1. In this way, the Young’s modulus of the material may be calculated using a combination of numerical and DIC techniques, thus allowing for the non-contact evaluation of the structural integrity without subjecting the material to destructive testing. Potential applications of this method include bridge and building assessments, and structural health monitoring (SHM).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference33 articles.

1. Applied Strength of Materials;Mott,2021

2. Elastic Modulus Measurement;Lord,2007

3. Comparison of static and dynamic methods for measuring stiffness of high modulus steels and metal composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3