Abstract
The space-charge field (SCF) is a key factor in vacuum electronic devices, accelerators, free electron lasers and plasma systems, etc. The calculation of the SCF is very important since it has a great influence on the precision of numerical simulation results. However, calculating the SCF usually takes a lot of time, especially when the number of simulated particles is large. In this paper, we used a vectorization, parallelization and truncation method to optimize the calculation of the SCF based on the traditional calculation algorithms. To verify the validity of the optimized SCF calculation algorithm, it was applied in the performance simulation of a millimeter wave traveling wave tube. The results showed that the time cost was reduced by three orders compared with conventional treatment. The proposed algorithm also has great potential applications in free electron lasers, accelerators and plasma systems.
Funder
Foundation of National Key Laboratory of Science and Technology on Vacuum Electronics
the National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献