Abstract
Atrial fibrillation (AF) is the most common arrhythmia and can seriously threaten patient health. Research on AF detection carries important clinical significance. This manuscript proposes an AF detection method based on ballistocardiogram (BCG) signals collected by a noncontact sensor. We first constructed a BCG signal dataset consisting of 28,214 ten-second nonoverlapping segments collected from 45 inpatients during overnight sleep, including 9438 for AF, 9570 for sinus rhythm (SR), and 9206 for motion artifacts (MA). Then, we designed a residual convolutional neural network (CNN) for AF detection. The network has four modules, namely a downsampling convolutional module, a local feature learning module, a global feature learning module, and a classification module, and it extracts local and global features from BCG signals for AF detection. The model achieved precision, sensitivity, specificity, F1 score, and accuracy of 96.8%, 93.7%, 98.4%, 95.2%, and 96.8%, respectively. The results indicate that the AF detection method proposed in this manuscript could serve as a basis for long-term screening of AF at home based on BCG signal acquisition.
Funder
National Natural Science Foundation of China
the Shanghai Municipal Science and Technology Major Project
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献