Low-Power Energy-Based Spike Detector ASIC for Implantable Multichannel BMIs

Author:

Saggese GerardoORCID,Strollo Antonio Giuseppe Maria

Abstract

Advances in microtechnology have enabled an exponential increase in the number of neurons that can be simultaneously recorded. To meet high-channel count and implantability demands, emerging applications require new methods for local real-time processing to reduce the data to transmit. Nonlinear energy operators are widely used to distinguish neural spikes from background noise featuring a good tradeoff between hardware resources and accuracy. However, they require an additional smoothing filter, which affects both area occupation and power dissipation. In this paper, we investigate a spike detector, based on a series of two nonlinear energy operators, and a simple and adaptive threshold, based on a three-point median operator. We show that our proposal provides good accuracy compared to other energy-based detectors on a synthetic dataset at different noise levels. Based on the proposed technique, a 1024-channel neural signal processor was designed in a 28 nm TSMC CMOS process by using latch-based static random-access memory (SRAM), demonstrating a total power consumption of 1.4 μW/ch and a silicon area occupation of 230 μm2/ch. These features, together with a comparison with the state of the art, demonstrate that our proposal constitutes an alternative for the development of next-generation multichannel neural interfaces.

Funder

Ministry of Education, Universities and Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3