RGB-Based Triple-Dual-Path Recurrent Network for Underwater Image Dehazing

Author:

Alenezi FayadhORCID

Abstract

In this paper, we present a powerful underwater image dehazing technique that exploits two image characteristics—RGB color channels and image features. In using RGB color channels, each color channel is decomposed into two units based on the similarities via the k-mean. This markedly improves the adaptability and identification of similar pixels, and thus reduces pixels with a weak correlation, leaving only pixels with a higher correlation. We use an infinite impulse response (IIR) in the triple-dual and parallel interaction structure to suppress hazed pixels via a pixel comparison and amplification to increase the visibility of even very minor features. This improves the visual perception of the final image, thus improving the overall usefulness and quality of the image. The softmax-weighted fusion is finally used to fuse the output color channel features to attain the final image. This preserves the color, leaving our proposed method’s output very true to the original scene’s. This is accomplished by taking advantage of adaptive learning based on the confidence levels of the pixel contribution variation in each color channel during subsequent fuses. The proposed technique both visually and objectively outperforms the existing methods in several rigorous tests.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3