Prediction of Bucket Fill Factor of Loader Based on Three-Dimensional Information of Material Surface

Author:

Wang ShaojieORCID,Yu Shengfeng,Hou Liang,Wu Binyun,Wu Yanfeng

Abstract

The bucket fill factor is a core evaluation indicator for the optimization of the loader’s autonomous shoveling operation. Accurately predicting the bucket fill factor of the loader after different excavation trajectories is fundamental for optimizing the loader’s efficiency and energy cost. Therefore, this paper proposes a method for predicting the bucket fill factor of the loader based on the three-dimensional information of the material surface. Firstly, the co-simulation model of loader shoveling material is established based on the multi-body dynamics software RecurDyn and the discrete element method software (DEMS) EDEM, and the co-simulation is conducted under different excavation trajectories. Then, the three-dimensional material surface information before shovel excavation is obtained from DEMS, and the surface function of the material contour is fitted based on the corresponding shovel excavation trajectory information. Meanwhile, the volume of the material excavated by the loader is obtained by the numerical integration method, and it is divided by the rated bucket volume to obtain the estimated bucket fill factor. Finally, the actual volume of the material after the shovel excavation is divided by the rated bucket volume to obtain the accurate bucket fill factor. Based on this, the prediction model of the bucket fill factor is built. The experimental results show that the proposed method is feasible, with a maximum error of 4.3%, a root mean square error of 0.025 and an average absolute error of 0.021. The research work lays the foundation for predicting the bucket fill factor of construction machinery such as loaders and excavators under real working conditions, which is conducive to promoting the development of autonomous, unmanned, and intelligent construction machinery.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3