Overview of Virtual Synchronous Generators: Existing Projects, Challenges, and Future Trends

Author:

Abuagreb Mohamed,Allehyani Mohammed F.ORCID,Johnson Brian K.ORCID

Abstract

The rapid growth in renewable energy-based distributed generation has raised serious concerns about the grid’s stability. Due to the intrinsic rotor inertia and damping feature and the voltage (reactive power) control ability, traditional bulk power plants, which are dominated by synchronous generators (SG), can readily sustain system instability. However, converter-based renewable energy sources possess unique properties, such as stochastic real and reactive power output response, low output impedance, and little or no inertia and damping properties, leading to frequency and voltage disturbance in the grid. To overcome these issues, the concept of virtual synchronous generators (VSG) is introduced, which aims to replicate some of the characteristics of the traditional synchronous generators using a converter control technique to supply more inertia virtually. This paper reviews the fundamentals, different topologies, and a detailed VSG structure. Moreover, a VSG-based frequency control scheme is emphasized, and the paper focuses on the different topologies of VSGs in the microgrid frequency regulation task. Then, the characteristics of the control systems and applications of the virtual synchronous generators are described. Finally, the relevant critical issues and technical research challenges are presented, and future trends related to this subject are highlighted.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3