Queue-Buffer Optimization Based on Aggressive Random Early Detection in Massive NB-IoT MANET for 5G Applications

Author:

Jafri Syed Talib AbbasORCID,Ahmed IrfanORCID,Ali SundusORCID

Abstract

Elements in massive narrowband Internet of Things (NB-IoT) for 5G networks suffer severely from packet drops due to queue overflow. Active Queue Management (AQM) techniques help in maintaining queue length by dropping packets early, based on certain defined parameters. In this paper, we have proposed an AQM technique, called Aggressive Random Early Detection (AgRED) which, in comparison to previously used Random Early Detection (RED) and exponential RED technique, improves the overall end-to-end delay, throughput, and packet delivery ratio of the massive NB-IoT 5G network while using UDP. This improvement has been achieved due to a sigmoid function used by the AgRED technique, which aggressively and randomly drops the incoming packets preventing them from filling the queue. Because of the incorporation of the AgRED technique, the queue at different nodes will remain available throughout the operation of the network and the probability of delivering the packets will increase. We have analyzed and compared the performance of our proposed AgRED technique and have found that the performance gain for the proposed technique is higher than other techniques (RED and exponential RED) and passive queue management techniques (drop-tail and drop-head). The improvement in results is most significant in congested network deployment scenarios and provides improvements in massive Machine Type Communication, while also supporting ultra-low latency and reliable communication for 5G applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3